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Abstract

A transient plane strain analysis of diffraction of plane waves by a semi-infinite crack in an unbounded orthotropic
or transversely isotropic solid is performed. The waves approach the crack at a general oblique angle, and are of two
types, a normal stress pulse and a shear stress pulse, i.e. a P- and an SV-wave, respectively, in the isotropic limit. A class
of materials that includes this limit and beryl, cobalt, ice, magnesium and titanium is chosen for illustration, and exact
solutions are obtained for the initial/mixed boundary value problems.

In contrast to related work, a factorization in the Laplace transform space is used to simplify the solution forms and
the Wiener-Hopf component of the solution process, and to yield a more compact expression for the Rayleigh wave
speed. Calculations for this speed, the two allowable, direction-dependent, plane wave speeds, and quantities related to
the Mode I and Mode II dynamic stress intensity factors are given for the five anisotropic materials mentioned.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of elastic plane wave diffraction by cracks is a key to understanding both wave scattering
(Achenbach, 1973; Miklowitz, 1978) and dynamic fracture (Freund, 1993). As these references attest, plane
wave diffraction in cracked isotropic solids is well understood, and the related problem of diffraction by
cracks at the welded interfaces of dissimilar isotropic solids has also been addressed (Brock and Achenbach,
1973).

Comprehensive studies of wave propagation in anisotropic solids are available (Kraut, 1963; Scott and
Miklowitz, 1967; Payton, 1983), but wave diffraction by cracks has received less attention. Norris and
Achenbach (1984) have treated the removal of time-harmonic plane-strain loads by a semi-infinite crack,
and Velgaki and Georgiadis (2001) have considered the transient problem of point loads applied to the
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surfaces of a semi-infinite crack. In the present article, therefore, an exact transient plane strain analysis is
carried out in a transversely isotropic or orthotropic solid subjected to plane waves impinging on a semi-
infinite crack at a largely arbitrary angle. Two types of plane waves are considered: a normal stress pulse
that would be a classical dilatational (P-) wave in the isotropic limit, and a shear stress pulse that would be a
classical rotational (SV-) wave in the isotropic limit. The pulse forms are largely arbitrary.

Exact solutions are obtained for the two initial/mixed boundary value problems in Laplace transform
space by using superposition and the Wiener-Hopf technique (Noble, 1958). The results are inverted for the
stresses at small radial distances from the crack edge, and quantities that essentially define the dynamic
stress intensity factors are extracted and studied.

For purposes of illustration, a class of orthotropic or transversely isotropic solids that includes beryl,
cobalt, ice, magnesium and titanium is examined. Similar classes were treated by Norris and Achenbach
(1984), Velgaki and Georgiadis (2001) and, in connection with Lamb’s problem, by Payton (1983). Cal-
culations for the intensity factor quantities, and the associated wave speeds and crack plane Rayleigh wave
speeds, are given for the five solids mentioned. The two plane wave speeds depend, of course, on the di-
rection of propagation, while a formula, exact to within a simple quadrature, defines the Rayleigh speed.

It should be noted that Velgaki and Georgiadis (2001) followed closely Norris and Achenbach (1984) in
the application of the Wiener-Hopf technique and extraction of a crack-plane Rayleigh wave speed. The
current study departs from both efforts by employing a factorization that simplifies the solution transform
expressions, and removes non-isolated (branch point) singularities that do not occur in the isotropic limt
from a function of the Rayleigh type. This procedure allows both a simpler Wiener-Hopf decomposition
and a more compact expression for the Rayleigh wave speed.

2. Basic formulation
Consider an unbounded solid containing a crack defined in terms of Cartesian coordinates (x,y,z) as the

semi-infinite slit y = 0, x < 0. The solid belongs to a class of linear homogeneous anisotropic materials that
is governed in plane strain by the field equations

o%u, U, 6214}, . |
011W+C446—y2+(013+c44)$6y:pux (la)
0%u o%u, Qu, ..
C44§2y+033§+ (c13 +C44)M = pu, (1b)
and the stress—strain formulas
Ou, Ou
szcnaﬁ-cwa—yy (2a)
Out, Ou,
, = Cl13 = —-— 2b
0, =C13 ox + ¢33 oy (2b)
Ou,  Ouy
y = = N, - 2
Oy Oyx C44<ax+ay> (C)

These equations hold for both orthotropic and transversely isotropic materials, where the (x,y)-axes are
axes of material symmetry. The (u,,u,) are the (x,y)-components of displacement, and are functions of
(x,y) and time, where (-) denotes time differentiation. The constants (¢, ¢, ¢33, c44) are a subset of the
elasticities ¢; (i,k =1,2,...,6) in the generalized Hooke’s law (Sokolnikoff, 1956) and p is the mass
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density. Egs. (1a) and (1b) follow from generic forms (Scott and Miklowitz, 1967) whose four constants can
be linearly related to various subsets of c¢;. Overviews of the general relations between c; and material
crystal structure can be found in Nye (1957) and Theocaris and Sokolis (2000). The isotropic limit case can
be obtained from (1a), (1b), (2a)—(2c) by setting ¢;; = ¢33 = 4 + 24, ¢13 = A and cg4 = u, where (4, i) are the
Lame’ constants (Sokolnikoff, 1956).

For convenience, the dimensionless quantities (Payton, 1983)

_27 ﬁzﬂv y=1+oc/3—m2, m:1+m (3)

Ca4 Ca4 Ca4

and the temporal variable s = v, x (time), where

by = \E )

are introduced so that the independent variables (x, y,s) all have dimensions of length, and (1a), (1b), (2a),
(2b) become, respectively,

0? L o%u
—t———u, ) 5
( ax2+6y2 6s2>u erax@y (5a)
0? 0? 02 %u,
1 Ou Ou 1 Ou Ou
g = B N2 g =(m—1)= Y 5
C44 O’X ﬁ ax + (m ) ay ) C44 O-} (m ) ax o ay ( C)

The quantity defined in (4) is, in the isotropic limit, the classical (Achenbach, 1973) rotational wave speed.
For purposes of illustration, the constraints (Payton, 1983)

2V/af<y<l+of (1 <p<a) (6a)
e+ pf<y<l+af (I<a<p) (6b)
20<y< 1+ (1<p=0) (6¢)

are imposed. The class of anisotropic materials governed by (6a)—(6¢) includes beryl, cobalt, ice, magnesium
and titanium, as well as the isotropic limit.

The solid is at rest when a plane wave is induced which travels toward the crack as depicted schemat-
ically in Fig. 1, where 0 < ¢ < ©/2 gives the attack angle. At s = 0 the wavefront reaches the crack edge

Fig. 1. Schematic of plane wave impinging upon crack.
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(x,y) =0, and the ensuing diffraction process generates a transient field in plane strain. Linear superpo-
sition allows the total displacement vector u to be written as

u=u’+u'+u (7)

where uP is the incident plane wave field and (u*,u?) are, respectively, the symmetric and anti-symmetric
components of the displacement generated by diffraction. The latter two fields can be obtained by studying
the half-space y > 0. Both fields are governed there by (2c), (5a)—(5¢) and the initial conditions

u=0 (s<0) (8)
but v® satisfies the symmetric mixed boundary conditions

0, =0; u, =0 (x>0), g, =—0a, (x<0) (9a)
on y = 0, while v* satisfies the anti-symmetric conditions

g, =0; u, =0 (x>0), O = —0obh  (x<0) (9b)

on y = 0. In addition, (u*,u*) should be finite for finite s > 0, and continuous in y > 0, although dis-
placement gradients may exhibit finite discontinuities at wavefronts, and integrable singularities at

(x,y) =0.
3. Incident plane wave forms
Consider in light of Fig. 1 the general incident plane wave displacement vector
Up(S+)£COS¢+XSiIl(]5), s+{cos¢+xsinq§>0 (10)
c ¢ c ¢

in plane strain, where ¢ is a propagation speed non-dimensionalized with respect to v,.
Substitution into (5a) and (5b) shows that (10) is a valid form only if ¢ = (¢, ¢;) and

p ; 2 aanZ 2
u%: msmqﬁcosq?2 _ G ocs?nqﬁ cos” ¢ (k=12) (11a)
Uy Ci—ﬂCOSz(ﬁ—Sln ¢ m sin ¢ cos ¢
-1 -1
(ce3) =1 +2 sin® ¢ +ﬁT cos’ ¢
—1 —1 ? :
i\/(az sinzqﬁ—ﬁ2 coszd>) + m? sin® ¢ cos? ¢ (11b)

For 0 < ¢ < m/2 and (6a)—(6¢c), (11b) is positive, i.e. (¢1,cy) are real-valued. In the isotropic limit, (11b)
gives ¢; = /1 +m and ¢, = 1, which are the non-dimensionalized speeds of, respectively, dilatational (P-)
and rotational (SV-, SH-) waves (Achenbach, 1973).

In view of this behavior, two types of incident waveform are considered: Referring to Fig. 1, type 1
produces the normal stress pulse

a?ZgQ(SvLXCOS(bersinqs), s+ cosg+Lsing >0 (12)
S c cy C €1

where g; is a bounded, piecewise-continuous function and ( )’ denotes differentiation with respect to the
argument. In light of Fig. 1, (2¢), (5a)-(5¢), (11a), (11b), (12),
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2 .2 2
b o) _ mcos ¢ fcos ¢ +sin” ¢ — ¢ x Yo 13
(u,2) ( el e cigi (4 cosg+ L sing (13a)
.08, ) = (e en)gi s+ cos + 2 sin g (13b)
O-y7o-yx = (e en)g (s o COS ‘ sin

where, as in (12), the arguments of (g, g}) are positive, and

A= [(1+m)cos® ¢ + asin’ ¢] (fcos® ¢ +sin’ ¢ — c}) — m[(1 + m)sin’ ¢ + fcos? ¢] cos” ¢ (14a)
Ae; = a(Bcos® ¢ +sin® ¢ — cf) + m(1 — m) cos’ ¢ (14b)

Aeyp = (Beos ¢ + sin® ¢ — ¢ — msin® ¢) cot ¢ (14c)

Study of (11b) shows that ¢; = /B (¢ = 0) and ¢; = /& (¢ = 1/2), so that the coefficients of (13a) and
(13b) are bounded for all 0 < ¢ < /2. In view of this, (12), (13a), (13b) describe in the isotropic limit a
classical P-wave.

The type 2 incident plane wave gives, on the other hand, the shear stress pulse

agqg’2<s+£cos¢+lsin¢), s+£cos¢+lsin¢>0 (15)
- [ (&) C (&)
where g, is a bounded, piecewise-continuous function. In this case,
) 2 2
pop) _ [ 2Sin ¢ +cos” ¢ —c; _mcosdb X Yo 16
(ux, uy) ( cndsing , ol g | s+ o cos ¢ + o sin ¢ (16a)
(ap o-p) = (er,en)g, s+£cos¢+lsinq’> (16b)
v Y ) ¢ s
where the arguments are positive, and
A= [(B—m)cos’ $ +sin’ ¢] («sin’ ¢ + cos? ¢ — ¢c3) + m[( — m) sin® § + cos® ¢] cos® ¢ (17a)
Aey = [(m —1)(cos® ¢ — c3) — a sin” ¢] cot ¢ (17b)
Aeyp = 2 + (1 — m) cos® ¢ + o sin® ¢ (17¢)

For this wave type, (11b) produces ¢; = 1 (¢ = 0,7/2); this demonstrates that (15), (16a), (16b) describe a
classical SV-wave in the isotropic limit, and that the coefficients in (16a) and (16b) are bounded for
0<¢p<m/2.

4. Fundamental problem

Consider the same half-space y > 0, subject to (2¢), (5a)—(5¢), (8), but now the unmixed boundary
conditions
Gy = G(X,S)7 U}W = T(xv S) (18)

hold on y = 0, where (g, 1) are no worse than integrably singular, and are bounded for finite s > 0. This
fundamental problem can be analyzed by introducing the unilateral (Sneddon, 1972) and bilateral (van der
Pol and Bremmer, 1950) Laplace transforms



5398 L.M. Brock, M.T. Hanson | International Journal of Solids and Structures 39 (2002) 5393-5408

F- / Fls)e ™ ds (19a)
0
F = / Fe 7 dx (19b)
and the corresponding inversion operations
1 N
F=5= [ Fedp (20a)
F=2L [ Ferdq (20b)
2mi

Here p is real and positive and large enough to ensure existence of (19a), while ¢ is imaginary. Integration in
(20a) and (20b) is over Bromwich contours in, respectively, the p- and ¢-planes. Application of (19a) and
(19b) to (5a), (5b), (8), (18) leads to the transform solutions

_ o Uy _
u, = Uae pay + (OCbz — Bz) m—qbe phy (213)
~ 2 2 Ua —pay —pb
i, = (aa® — A7) ——e P + Upe ™ (21b)
] mqoa
for y > 0, where
c4apR 5 27~ 2 2 2\ 7 ~
U, =- —1)B b — (B°—ab b 22
mgaa [(m )B* + o ]q‘r ( o —|—mq) G (22a)
R
C::;)b Uy = —[(m — 1)aa* + A*|q6 + (B* — ab® + mq*)oat (22b)
R=[(m—1)aa’ + 4% [(m — 1)B* + ab’|¢* + (B* — ab” + qu)zAB (22¢)

In (22a)—(22c¢) the definitions

A=va/1-pg, B=+1-¢ (23a)

1
V2a(b,a) = \/ S+ VS2 — 442> = 7 (\/S +24B+ VS — 2AB) (23b)
S=A*+B +m*q®> =1+0a—yq*, oab=AB (23c¢)

hold. It can be shown (Payton, 1983) that (6a)—(6c) guarantees that the branch points ¢ = 4-(1/y/B, 1) of
(4,B) lie on the Re(g)-axis, and also constitute branch points of (a,b). Boundedness of (21a) and (21b)
requires that Re(4,B,a,b) > 0 in the cut g-plane. Eq. (23a) also show that (v,,/Bv,) are the speeds of,
respectively, rotational and dilatational waves parallel to the x-axis.

Eq. (22¢) defines a form of the Rayleigh function. Indeed, in the isotropic limit we have cy = g,
o=pf=1+mand y=2(1+m) so that

R=m*(1+m)abiR;, R;=4qab;+ (1— 2(]2)2 (24a)
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1
.= 2 R _ g2
a; =/ Tom q*, b 1—g¢q (24b)

where R; is the Rayleigh function for linear isotropic elasticity (Achenbach, 1973). The quantity in (22c¢)
exhibits the isolated real roots ¢ = +£1/cg, where 0 < ¢z < 1 and cgv, is the speed of Rayleigh waves parallel
to the x-axis. The quantity R also vanishes when b = a. However, in this limit the exponential terms in (21a)
and (21b) are identical, so that these equations become simple linear combinations of (&, 7). It can be shown
that the numerators of the resulting coefficients of (¢,7) themselves vanish when b = a, so that the addi-
tional roots of R play no role in solution behavior.

In the sequel, the displacements along y = 0 are required, and so (21a), (21b), (22a)—(22c) are combined
to give

g =2 T _4Y 9 252
’ R cup R cup (252)

BNy G gN 1T

u, = 25b
! R cyp R cup (25b)

for y = 0, where R is given by (22¢) and

N = (4 —od’)[(m—1)B> + ab’] + (B> — ab” + mq’)mAB (26a)

Ny = (B* - ab2)2 + m*q*B* (26b)

OCbZNV = —AZNU (26(:)
In the isotropic limit, (25a) and (25b) reduces to forms

i, _ﬁi_%i’ ~y:_ﬁi N T (27)

Riwp  R; up Riwp  R; pp

found for isotropic elasticity (Brock, 1991). Here R; is given by (24a) and

N, =2(4 + ab;) — 1 (28)

For y = 0, the exponential terms in (21a) and (21b) take the same value (unity). Thus, the numerators of the
coefficients of (G,7) in (25a) and (25b) are precisely the ones that vanish when b = a. This suggests that
simplifications to (25a) and (25b) be made: first, (23b) gives

Vo(b+a) =VS+24B = \/(4 + B)’ + m>¢? (29)

and it follows that > = b> when b+ a =0, i.c.

» p(1+a) =201+ B) £ i2my/ayy —o—
T P — 4ap

In view of (6a)—(6¢) the denominator and, in the numerator, the real term and second radical in the
imaginary term, are positive and vanish in the isotropic limit. However, the second radical vanishes in this
limit as O(y/¢), ¢ — 0 while the other terms behave as O(¢), ¢ — 0. Therefore, the apparent branch points
defined in (30) would move to infinity in the g-plane. Additional cuts for those branch points must be
introduced so that the restriction Re(a, b) = 0 is still met. To this end, b + a is allowed to be continuous
across these cuts, although (a,b) themselves are multi-valued. Thus, the additional cuts define branches of
b — a. Similar situations arose in the studies by Norris and Achenbach (1984) and Velgaki and Georgiadis
(2001).

(30)
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Here, however, we recognize that b = a defines roots of both R and the coefficient numerators in (26a)—
(26¢) and factor the quantity b — a out of each, thereby canceling them from the formulas. From (A.4),
(A.5a), (A.5b) in the Appendix A, and use of (23c), the result

_ a(b+a)B T Mg &

i, = — I 3la
2D Caap D Caap ( )
b A o Mg <
g, —_Lbraod s Mg T (31b)
2D cup D cup
for y = 0 is obtained, where
D=d+ A2—|—(m—l)2q2}B, M=4+(1-mB (32)

It is noted that, for the restriction (6a)—(6c) the coefficients of (&, 7) exhibit only the branch cuts Im(q) = 0,
|Re(g)| > 1 and Im(q) = 0, |[Re(q)| > 1/+/B. In particular, D is analytic in the g-plane cut along Im(g) = 0,
|Re(g)| > 1/+/B and has the non-isolated real roots ¢ = +1/cx (0 < ¢z < 1). Indeed, setting D =0 and
rationalization gives a cubic equation in ¢? that is identical in form to that obtained by Payton (1983) as
equation (4.3.22) for the roots of the transversely isotropic Rayleigh function. Thus, D is the essential
factor of the Rayleigh function R in (22¢) and, as an alternative to the cubic equation, ¢z can be found to
within a simple quadrature as the formula (B.4a) and (B.4b) in Appendix B. With (31a) and (31b) avail-
able, the symmetric and anti-symmetric crack problems for both type 1 and type 2 incident waves can be
addressed.

5. Symmetric and anti-symmetric problem solutions

In view of (13b) and (16b), the mixed boundary conditions (9a) for the symmetric problem can be written
in the Wiener-Hopf (Noble, 1958) form

Uy = % Vix,s) (33a)
Gy =0 (33b)
o, =—eg (s —&—z cos qb)H(s +)EC cos ¢)H(—x) + Z(x,s) (33¢)

for s > 0 on y = 0. Here H( ) is the Heaviside function and (13a) and (13b) and (c;, g}) are understood for
the type | incident plane wave, while (16a) and (16b) and (c,, g5) are understood for the type 2 case. The
function V is the unknown crack-opening displacement, and therefore vanishes identically for x > 0 but
must be continuous as x — 0—. The function X is the unknown normal crack plane stress ahead of the
crack, and therefore vanishes for x < 0 and may be integrably singular as x — 0-+.

The form of (33a)—(33c) implies that the fundamental problem considered above governs the solution to
the symmetric problem upon setting t = 0, equating ¢ to the right-hand side of (33¢) and enforcing the
condition (33a). Thus, operating on (33a) and the right-hand side of (33c) with (19a) and (19b) reduces the
symmetric problem to the equation

= (btadls  eaf
V= cupD <Z p(m _ q)> (34)

c




L.M. Brock, M.T. Hanson | International Journal of Solids and Structures 39 (2002) 5393-5408 5401

in transform space. Existence requires that V be analytic for Re(g) < cos ¢/c and that Y and the second
term in parentheses be analytic for Re(g) > —1/4/B and Re(q) < cos ¢/c, respectively. The parenthesis
coefficient is analytic in the strip [Re(g)| < 1/+/B, while the singularity in the second term in parentheses is
isolated. Therefore, by a standard (Noble, 1958; Achenbach, 1973) process of decomposition by factor-
ization and summation, (34) can be written in a form that equates a term that is analytic for
Re(q) > —1/+4/PB to one that is analytic for Re(g) < cos ¢/c. The key factorization process concerns the
quantity D/(b + a) in (34), and is outlined in Appendix B. Because both terms are analytic in the common
strip —1/1/B < Re(g) < cos ¢/c, they must, by Liouville’s theorem, be equal to the same bounded entire
function of (p,q). However, continuity of V" as x — 0— requires that pgV be bounded as |¢| — oo, which
implies that the entire function is in fact zero. The result is that two equations exist, and can be solved to
yield

S R M AR U R/ (350

e’ of (=17 (=24 1)6,(=) (- L )0

c

. cos¢ 1
g e | VIEVPRER ety G (35b)

p(=2—q) L+qVf St+LG(22)

In (35a) and (35b) ¢z is defined by (B.4a) and (B.4b) and the terms G- are defined in Appendix B by (B.7a)
and (B.7b).

In a similar manner, the mixed condition (9b) for the anti-symmetric case can be treated with the
fundamental solution and the Wiener-Hopf approach to give the transform expressions

5 end Voo +2Vop = V-4

U= 36a
cup® aff —(m—1) (C°§¢+#)G+(C°j¢) (Cl—é G- (362)

~ o Al +@ 4+ L

T — eng 1 — q CR G+ (36b)

Pt —q) VIitg @ty LG (0

Here (T, U) are, respectively, the crack plane shear traction ahead of the crack edge and the crack plane
slip. In terms of the fundamental solution, now ¢ = 0 and

T=—eng (s +§ cos qf))H(s +)EC cos ¢)H(—x) + T(x,s) (37)

With (35a), (35b), (36a), (36b) and the fundamental solution in hand, the solution process for the symmetric
and anti-symmetric problems is essentially complete. The transient behavior of the stresses in the vicinity of
the crack generated by diffraction of the two incident waves is now examined.

6. Crack edge transient stress fields

In light of (21a), (21b), (22a)—(22c) superposition and the results obtained above, one can write the
transforms of the displacements (u®,u?) in (7). Operating on (2¢) and (5¢) with (19a) and (19b) and use of
(22a)—(22c) then gives the corresponding stress transforms. Results valid near (/x> + )? =~ 0) the crack
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edge can be obtained by allowing |g| — oo and keeping the highest-order terms (van der Pol and Bremmer,
1950). The key step in this operation is use of the asymptotic forms

A% oBaVTa BRIV amanay i bR biiya (38)
a= (V2= 2v5). b= (Vieavai i - 2va) (38b)

where (ag,by) = 1 in the isotropic limit, and Re(,/q,/—¢) = 0 in planes cut along Im(g) = 0, Re(q) < 0
and Im(g) = 0, Re(g) > 0, respectively. It is then easily shown, for example, that

2 AoB K K
2 A (0, S0 B E
B K 4
22 (\f BBy —= + \/aby A, q)ie-PboyﬁFq (39)
In (39) the definitions
Ay=(m—1aj+p, By=m—1+ab] (40a)

RO:\/W/—Z\/@[aﬁ (m—1) }(fbo—ao) (40b)
K - 2e; \ 1+ \/_M 2eyy V I+ # (40c¢)

3 (erl)ﬁwG ()’ T (M+L>G+(COS¢)
c cr c CR c

hold. In (39) and (40c) the quantities (c;,g;) and Eqs. (14a)—(14c) are understood for the type 1 incident
plane wave, while (c,,g5) and (17a)~(17c) are understood for the type 2 case. It is noted that only the
contributions from the diffracted waves appear in (39), because they dominate the stress transform con-
tributions due to the incident waves (12) and (15) themselves for |g| — oc.

Substitution of the first term in (39) into (20b) gives the two generic inversion operations

)

2% oo Wwv)<\1[ \/1_) (41)

where the Bromwich contour can be taken as the entire Im(g)-axis. Cauchy theory can then be used to
change this contour to paths in the g-plane parameterized by

—t
X £ iagy b>0) (42)

q:

where ¢ is real and positive. Upon introducing the polar coordinates (r = /x> + »?,tan 0 = y/x) depicted in
Fig. 1, (41) takes the simple form

5/ % o pt
( as a)/o Wdt (433)

1 / 0o . 0
Cam<0059 1+%+aosm6 1‘“12) (43b)
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1 / /
ra\/z;;<cos(9 1—°‘:0—a0sin0 1+°‘:9> (43¢)

r, = 1/cos? 0 + a?sin’ 0 43d
0

where r = 0, 0 < 0 < 7. In the isotropic limit, r, = 1 and (43b) and (43c) give (cos §/2,sin 0/2), respectively.
The integration in (43a) gives /n/p (Pierce and Foster, 1956). Therefore, the final inversion operation need
deal only with the term ¢'/,/p, and can be performed by inspection and convolution theory (Sneddon,
1972). A similar procedure holds for the transforms of (o,,0,) as well. In summary, then, the asymptotic
results

S, =

I
Oy N — [Ao (\/BBoCa + \/&DOCb)KI + VaaoBo(40S, + DOSb)KII] 2 (S)r (44a)
0
o I(s)
Gy ~ Bo \/BC() + \/&A()Cb KI + \/&doBo(CoSa + BoSb)KH R - (44b)
0
~ _ _ B()I(S)
Oyx ™~ Vado(boS, — Sy)Ki + \/BBOCI; VadoC, ) Kn Ro/r (44c¢)
0
hold for s > 0, r =~ 0, 0 < 0 < m, where (Cy, Sy, ) follow from (43a)—(43d) by replacing a, with by, and
Co =m(m — 1)+ a(ag — ), Dy = f+ [m(m — 1) — af]b; (45a)
40
I(s) = dr 45b
W= [ 2 (45b)

7. Speed and intensity factor behaviors

The speed of Rayleigh waves parallel to the x-axis for the class of anisotropic material considered here is
given by cpv,, where (B.4a) and (B.4b) hold. Table 1 presents the dimensionless constant cg, along with the
properties (o, f§,m, csq) for five materials—beryl, cobalt, ice, magnesium and titanium—which satisfy the
restriction (6a)—(6¢) on this class. The entries show that, as a fraction of the speed v,, the Rayleigh speeds
are similar, and would be typical of isotropic solids (Achenbach, 1973). It should also be noted that the
Table 1 data is in agreement with results by Payton (1983).

In Table 2, the dimensionless constants (cy, ¢;) that define the two plane wave speeds supported by the
five materials featured in Table 1 are given for various values of attack angle ¢. It is noted that ¢;, which

Table 1
Dimensionless Rayleigh wave speed
o p m cq44 (GPa) Cr
Beryl 3.62 4.11 2.01 68.6 0.956
Cobalt 4.74 4.07 2.37 75.5 0.962
Ice 4.57 4.26 2.64 3.17 0.959
Magnesium 3.74 3.61 23 16.4 0.943

Titanium 3.88 3.47 2.48 46.7 0.936
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Table 2

Dimensionless plane wave speeds and intensity factors for beryl, cobalt, ice, magnesium, titanium
¢ c K; Kn &) K; Ky
Beryl
4.5° 2.025 0.1214 0.0189 1.004 0.099 0.4892
13.5° 2.003 0.1346 0.0576 1.035 0.2771 0.4376
22.5 1.964 0.1637 0.0984 1.086 0.4066 0.3476
31.5° 1.916 0.213 0.14 1.142 0.4782 0.2326
40.5° 1.872 0.2848 0.1737 1.183 0.4937 0.0984
49.5° 1.847 0.3701 0.187 1.19 0.4607 —0.0536
58.5° 1.848 0.4476 0.1715 1.156 0.396 -0.22
67.5° 1.867 0.5032 0.1341 1.098 0.3127 —0.399
76.5° 1.888 0.5394 0.055 1.04 0.2092 —0.5831
85.5° 1.9 0.5641 0.0326 1.005 0.0769 —0.7511
Cobalt
4.5° 2.016 0.1667 0.0205 1.006 0.1226 0.4878
13.5° 2.001 0.1857 0.0622 1.049 0.3321 0.4214
22.5 1.979 0.2265 0.104 1.119 0.4614 0.313
31.5° 1.96 0.2915 0.1414 1.187 0.5083 0.1848
40.5° 1.962 0.3736 0.1631 1.225 0.491 0.0456
49.5° 1.994 0.4505 0.1597 1.2167 0.4357 -0.1014
58.5° 2.048 0.504 0.1351 1.168 0.3664 —0.2559
67.5° 2.104 0.5394 0.1002 1.102 0.2887 —0.4209
76.5 2.149 0.5532 0.0619 1.041 0.1937 —0.5936
85.5° 2.174 0.5683 0.0215 1.005 0.0713 —0.7536
Ice
4.5° 2.062 0.19 0.0202 1.004 0.1079 0.4891
13.5° 2.05 0.2065 0.0605 1.037 0.2971 0.4286
22.5° 2.029 0.2413 0.1001 1.0896 0.4239 0.326
31.5° 2.01 0.2947 0.1348 1.142 0.4823 0.2004
40.5° 2.003 0.3617 0.1566 1.174 0.4837 0.0613
49.5° 2.017 0.4289 0.1579 1.171 0.4458 —0.0881
58.5° 2.048 0.4828 0.1389 1.136 0.385 —0.25
67.5° 2.086 0.52 0.1067 1.084 0.3066 —-0.419
76.5° 2.118 0.5447 0.068 1.034 0.2057 —0.595
85.5° 2.135 0.5631 0.024 1.004 0.0754 —0.7556
Magnesium
4.5° 1.899 0.1743 0.0236 1.002 0.0861 0.481
13.5° 1.892 0.1904 0.07 1.018 0.2439 0.4296
22.5 1.881 0.223 0.1135 1.045 0.3646 0.3367
31.5° 1.87 0.1713 0.1498 1.071 0.438 0.2138
40.5° 1.866 0.3313 0.1724 1.088 0.4644 0.0757
49.5° 1.872 0.3944 0.176 1.087 0.4504 —0.0864
58.5° 1.887 0.4515 0.1589 1.07 0.403 —0.2522
67.5° 1.91 0.4972 0.1259 1.043 0.3255 —0.4211
76.5° 1.923 0.5315 0.0817 1.0716 0.2176 —0.5838
85.5° 1.933 0.5564 0.0291 1.002 0.0791 —0.7241
Titanium
4.5° 1.863 0.2046 0.0257 1.001 0.0792 0.4773
13.5° 1.863 0.2213 0.0751 1.01 0.2264 0.4267
22.5 1.867 0.2537 0.1185 1.024 0.3434 0.3328
31.5° 1.872 0.2988 0.151 1.037 0.42 0.2067
40.5° 1.884 0.3516 0.1684 1.045 0.4542 0.0589

49.5° 1.902 0.4054 0.1681 1.044 0.4484 —0.0108
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Table 2 (continued)

¢ ) K Ky e K; Kn

58.5° 1.923 0.4545 0.151 1.035 0.4061 —0.2679
67.5° 1.943 0.4956 0.12 1.021 0.3294 —0.4319
76.5 1.96 0.528 0.0782 1.009 0.2196 —0.5884
85.5° 1.969 0.552 0.0279 1.001 0.0795 —0.7136

corresponds to a dilatational (P-) wave speed in the isotropic limit, achieves maximum values for
¢ = (0,m/2). The opposite effect occurs for ¢,, which corresponds in the isotropic limit to a rotational (SV-)
wave speed. Indeed, its maximum value occurs roughly in the mid-range of ¢, and is nearly 20% higher than
its limit values at ¢ = (0,7/2). Thus, a type 1 plane wave loses speed by traveling at angles to the material
symmetry (x-, y-) axes of the solids considered here, while the type 2 wave gains speed. These results are also
consistent with the studies by Payton (1983) and Norris and Achenbach (1984).

Eq. (45b) shows that /(s) is merely a weighted history of the plane wave stress pulse functions (g}, g5). In
view of (40c), (44a)-(44c), therefore, it is the dimensionless quantities (K, Kjj) that essentially define, re-
spectively, the Modes I and IT dynamic stress intensity factors for the diffraction process. Values for these
quantities are, therefore, given in Table 2 for the type 1 and type 2 plane wave cases. The data indicates
behavior similar to that for their respective (P-wave, SV-wave) isotropic limit cases: For type 1, K| increases
with ¢, while Kj; reaches a maximum in the mid-range of 0 < ¢ < ©/2. Moreover, the maximum values of
K7 are much larger than those of Kj;. For type 2, on the other hand, K7 achieves a mid-range maximum,
while K7; changes sign in mid-range, and the maximum values are more comparable.

Thus, a stress intensity factor-based fracture criterion (Freund, 1993) might predict failure for type 1
plane waves that approach the crack at a single oblique angle, while two such angles might arise for type 2
plane wave diffraction.

8. Comments

This article considered the transient plane-strain problem of diffraction of plane waves by a semi-infinite
crack in an unbounded orthotropic or transversely isotropic solid. A class of materials that included beryl,
cobalt, ice, magnesium and titanium was chosen for illustration, the plane waves approached the crack at a
general oblique angle of attack, and were of two types. One type was a normal traction pulse that reduced
to a classical dilatational (P-) wave in the isotropic limit, and the other, a shear traction pulse that reduced
to a rotational (SV-) wave.

Linear superposition and symmetry arguments reduced the analysis to the treatment of initial/mixed
boundary value problems, solved by Laplace transform and Wiener-Hopf techniques. An exact solution in
the transform space was obtained, and expressions for all stresses at small radial distances from the crack
edge were obtained by inversion.

The incident plane wave pulses were largely arbitrary, and it was found that two dimensionless quantities
essentially defined the Modes I and II dynamic stress intensity factors for any pulse form. Values of these
quantities at various attack angles were given for the five materials noted above. Their variation with angle
was similar to that for diffraction of P- and SV-waves in an isotropic solid.

The speeds of plane wave propagation also varied with attack angle, and exact formulas for those speeds
gave values at various angles for the five materials. These showed that the speed of the normal traction
pulse was maximized when wave travel was parallel to a material symmetry axis, while the speed of the
shear traction pulse reached a maximum when propagation was at an oblique angle. Such behavior was
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consistent with previous studies in anisotropic solids. Calculations based on a formula (Appendix B),
analytic to within a simple quadrature, showed for the five materials that the values of the crack plane
Rayleigh wave speed were similar to those for isotropic solids.

In summary, transient studies of wave diffraction by cracks (and the possibility of dynamic fracture) in
anisotropic solids do yield results that show both the importance of anisotropy, but also the similarities in
behavior with studies in isotropic solids. Indeed, manipulations in the transform space can partly offset the
complications that arise in the treatment of anisotropic solids.
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Appendix A

Consider Ny defined by (26¢c). By using (26b) and (23c¢), it can be written as
Ny = (B> — ab®) (4* — 0a®) — m*q*ad’ (A1)
Carrying out the multiplication and using (23a), (23b), (29) gives

_ 22_5_2 “_2 2 \2¢ 2 2 2 42
Ny =24°B 2+2(b a’) (m’q* + B> — 4°) (A.2)

But (23a), (23b), (29) also show that

S?— 4B =2 (B - ), mg+B = % (b+a+b—a)— A (A.3)
whereupon (A.2) and Ny given by (26b) can be written as

Ny = (B — &) (s — 4), Ny = (“f)z(bz — &) (sa? — 4 (A4)
In similar fashion, (26a) and (22¢) can be written as

Nzg(b—a)(Az—cxaz)M, M=A4+(1-m)B (A.5a)

R= g (b—a)(4> — aa®)D, D=A+ [AZ 4 (m— 1)%113 (A.5b)

These functions all exhibit the common factor (b — a)(4> — aa?).

Similar factorizations of the terms (R;, N;) in (24a) and (28) that arise in the isotropic limit can also be
performed:

]vi:(bi_ai)<

Ltm Lom > (A.6a)

a; +—bl
m

Ri=2 (b~ a) (14 m)as + (14 m— 4q")b] (A.6b)
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Appendix B

From (32) consider the function D/A. It exhibits the branch cuts Im(q) = 0,1//f < |[Re(q)| < 1, has the
isolated real roots ¢ = +1/cz (0 < ¢z < 1) and behaves as

(m — 1)2 \/“ 2
—Vap|q, gl — oo (B.1)
l%ﬁ
We define, therefore, the function
Fo__ DVoB ! (B.2)

A[ocﬂ—(m— 1)2} é_qz
that is analytic in the same cut plane, but has no roots there, and behaves as unity when |g| — oo. This
function can be written as the product of two functions, F,, that are analytic in the overlapping regions
Re(g) > —1/+/B and Re(q) < 1/+/B, respectively, by means of a standard procedure (Noble, 1958), where

1 ' wde
o V=2 2 )
» = tan ;Zi——B;—:—I{a—%((nz 1) aﬂ)t] (B.3b)

Both F. are analytic in the common strip |[Re(q)| < 1/4/B, and (B.2) holds there as well. Therefore, setting
g =0 in (B.2) and using (B.3a) and (B.3b) gives the formula

_Jap—(m—1)
Cp = 4(1 n \/&)MFR (B4a)

1 1
m&z—/ wdt (B.4b)
Y 1/\/5 t

Here (6a)—(6c) guarantees that the coefficient of Fy is real and positive. A similar approach was used by
Norris and Achenbach (1984), albeit for a more complicated function than D/A. Some other examples for
this root-finding approach are given by Brock (1998).

Now consider from (34) the function D//x(b + a). It exhibits the same branch cuts and isolated roots as
does D/A4, but behaves as

(m—1)"—af , _ B.5
v+NWq’m 00 (B.5)

The function

6___ D T NCT (B.6)

Vo(b+a) cx[f—(m—l)zé—qz

is defined, where (6a)-(6¢c) guarantees that the central ratio is real and positive. This function can also be
written as the product of two functions, G., that are analytic in the same overlapping regions as were,
respectively, F.. In this case, the standard procedure (Noble, 1958) yields
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1
InG, = —l/ Ldt (B.7a)
T 1/\//_;t:|:q

o et VEVEET ob? — B2 [AZ + (m — 1)212} B
= tan .
B | m- 1] - a2

where (—A42, B, b) are defined in (23a) and (23b), with ¢ replacing ¢, and it is noted that these quantities are
real and positive for 1/y/B <t < 1. In the isotropic limit, (B.7b) appropriately reduces to (Achenbach,
1973)

42V1 — 2P — -
Q= tan™! B (B.8)
(1-20)

It should be noted that an expression for ¢z could also be obtained by setting ¢ = 0 in (B.6) and using
(B.7a). The integrand term Q is more complicated than its counterpart @ in (B.4b), however, so that the
formula is less compact.
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