
An exact transient analysis of plane wave diffraction
by a crack in an orthotropic or transversely isotropic solid

L.M. Brock *, M.T. Hanson

Department of Mechanical Engineering, University of Kentucky, 521 CRMS Building Lexington Campus,

Lexington, KY 40506-0108, USA

Received 22 November 2000; received in revised form 11 June 2002

Abstract

A transient plane strain analysis of diffraction of plane waves by a semi-infinite crack in an unbounded orthotropic

or transversely isotropic solid is performed. The waves approach the crack at a general oblique angle, and are of two

types, a normal stress pulse and a shear stress pulse, i.e. a P- and an SV-wave, respectively, in the isotropic limit. A class

of materials that includes this limit and beryl, cobalt, ice, magnesium and titanium is chosen for illustration, and exact

solutions are obtained for the initial/mixed boundary value problems.

In contrast to related work, a factorization in the Laplace transform space is used to simplify the solution forms and

the Wiener-Hopf component of the solution process, and to yield a more compact expression for the Rayleigh wave

speed. Calculations for this speed, the two allowable, direction-dependent, plane wave speeds, and quantities related to

the Mode I and Mode II dynamic stress intensity factors are given for the five anisotropic materials mentioned.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of elastic plane wave diffraction by cracks is a key to understanding both wave scattering

(Achenbach, 1973; Miklowitz, 1978) and dynamic fracture (Freund, 1993). As these references attest, plane

wave diffraction in cracked isotropic solids is well understood, and the related problem of diffraction by
cracks at the welded interfaces of dissimilar isotropic solids has also been addressed (Brock and Achenbach,

1973).

Comprehensive studies of wave propagation in anisotropic solids are available (Kraut, 1963; Scott and

Miklowitz, 1967; Payton, 1983), but wave diffraction by cracks has received less attention. Norris and

Achenbach (1984) have treated the removal of time-harmonic plane-strain loads by a semi-infinite crack,

and Velgaki and Georgiadis (2001) have considered the transient problem of point loads applied to the
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surfaces of a semi-infinite crack. In the present article, therefore, an exact transient plane strain analysis is

carried out in a transversely isotropic or orthotropic solid subjected to plane waves impinging on a semi-

infinite crack at a largely arbitrary angle. Two types of plane waves are considered: a normal stress pulse

that would be a classical dilatational (P-) wave in the isotropic limit, and a shear stress pulse that would be a
classical rotational (SV-) wave in the isotropic limit. The pulse forms are largely arbitrary.

Exact solutions are obtained for the two initial/mixed boundary value problems in Laplace transform

space by using superposition and the Wiener-Hopf technique (Noble, 1958). The results are inverted for the

stresses at small radial distances from the crack edge, and quantities that essentially define the dynamic

stress intensity factors are extracted and studied.

For purposes of illustration, a class of orthotropic or transversely isotropic solids that includes beryl,

cobalt, ice, magnesium and titanium is examined. Similar classes were treated by Norris and Achenbach

(1984), Velgaki and Georgiadis (2001) and, in connection with Lamb�s problem, by Payton (1983). Cal-
culations for the intensity factor quantities, and the associated wave speeds and crack plane Rayleigh wave

speeds, are given for the five solids mentioned. The two plane wave speeds depend, of course, on the di-

rection of propagation, while a formula, exact to within a simple quadrature, defines the Rayleigh speed.

It should be noted that Velgaki and Georgiadis (2001) followed closely Norris and Achenbach (1984) in

the application of the Wiener-Hopf technique and extraction of a crack-plane Rayleigh wave speed. The

current study departs from both efforts by employing a factorization that simplifies the solution transform

expressions, and removes non-isolated (branch point) singularities that do not occur in the isotropic limt

from a function of the Rayleigh type. This procedure allows both a simpler Wiener-Hopf decomposition
and a more compact expression for the Rayleigh wave speed.

2. Basic formulation

Consider an unbounded solid containing a crack defined in terms of Cartesian coordinates ðx; y; zÞ as the
semi-infinite slit y ¼ 0, x < 0. The solid belongs to a class of linear homogeneous anisotropic materials that

is governed in plane strain by the field equations

c11
o2ux

ox2
þ c44

o2ux

oy2
þ ðc13 þ c44Þ

o2uy

oxoy
¼ q€uux ð1aÞ

c44
o2uy

ox2
þ c33

o2uy

oy2
þ ðc13 þ c44Þ

o2ux

oxoy
¼ q€uuy ð1bÞ

and the stress–strain formulas

rx ¼ c11
oux

ox
þ c13

ouy

oy
ð2aÞ

ry ¼ c13
oux

ox
þ c33

ouy

oy
ð2bÞ

rxy ¼ ryx ¼ c44
ouy

ox

�
þ oux

oy

�
ð2cÞ

These equations hold for both orthotropic and transversely isotropic materials, where the ðx; yÞ-axes are

axes of material symmetry. The ðux; uyÞ are the ðx; yÞ-components of displacement, and are functions of

ðx; yÞ and time, where (�) denotes time differentiation. The constants ðc11; c13; c33; c44Þ are a subset of the
elasticities cik ði; k ¼ 1; 2; . . . ; 6Þ in the generalized Hooke�s law (Sokolnikoff, 1956) and q is the mass
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density. Eqs. (1a) and (1b) follow from generic forms (Scott and Miklowitz, 1967) whose four constants can

be linearly related to various subsets of cik. Overviews of the general relations between cik and material

crystal structure can be found in Nye (1957) and Theocaris and Sokolis (2000). The isotropic limit case can

be obtained from (1a), (1b), (2a)–(2c) by setting c11 ¼ c33 ¼ k þ 2l, c13 ¼ k and c44 ¼ l, where ðk; lÞ are the
Lame� constants (Sokolnikoff, 1956).

For convenience, the dimensionless quantities (Payton, 1983)

a ¼ c33
c44

; b ¼ c11
c44

; c ¼ 1þ ab � m2; m ¼ 1þ c13
c44

ð3Þ

and the temporal variable s ¼ vr � ðtimeÞ, where

vr ¼
ffiffiffiffiffiffi
c44
q

r
ð4Þ

are introduced so that the independent variables ðx; y; sÞ all have dimensions of length, and (1a), (1b), (2a),

(2b) become, respectively,

b
o2

ox2

�
þ o2

oy2
� o2

os2

�
ux þ m

o2uy

oxoy
¼ 0 ð5aÞ

o2

ox2

�
þ a

o2

oy2
� o2

os2

�
uy þ m

o2ux

oxoy
¼ 0 ð5bÞ

1

c44
rx ¼ b

oux

ox
þ ðm � 1Þ ouy

oy
;

1

c44
ry ¼ ðm � 1Þ oux

ox
þ a

ouy

oy
ð5cÞ

The quantity defined in (4) is, in the isotropic limit, the classical (Achenbach, 1973) rotational wave speed.

For purposes of illustration, the constraints (Payton, 1983)

2
ffiffiffiffiffiffi
ab

p
6 c6 1þ ab ð1 < b < aÞ ð6aÞ

a þ b6 c6 1þ ab ð1 < a < bÞ ð6bÞ

2a6 c6 1þ a2 ð1 < b ¼ aÞ ð6cÞ

are imposed. The class of anisotropic materials governed by (6a)–(6c) includes beryl, cobalt, ice, magnesium

and titanium, as well as the isotropic limit.

The solid is at rest when a plane wave is induced which travels toward the crack as depicted schemat-

ically in Fig. 1, where 0 < / < p=2 gives the attack angle. At s ¼ 0 the wavefront reaches the crack edge

Fig. 1. Schematic of plane wave impinging upon crack.
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ðx; yÞ ¼ 0, and the ensuing diffraction process generates a transient field in plane strain. Linear superpo-

sition allows the total displacement vector u to be written as

u ¼ up þ us þ ua ð7Þ

where up is the incident plane wave field and ðus; uaÞ are, respectively, the symmetric and anti-symmetric

components of the displacement generated by diffraction. The latter two fields can be obtained by studying

the half-space y > 0. Both fields are governed there by (2c), (5a)–(5c) and the initial conditions

u � 0 ðs6 0Þ ð8Þ

but us satisfies the symmetric mixed boundary conditions

ryx ¼ 0; uy ¼ 0 ðx > 0Þ; ry ¼ �rp
y ðx < 0Þ ð9aÞ

on y ¼ 0, while ua satisfies the anti-symmetric conditions

ry ¼ 0; ux ¼ 0 ðx > 0Þ; ryx ¼ �rp
yx ðx < 0Þ ð9bÞ

on y ¼ 0. In addition, ðus; uaÞ should be finite for finite s > 0, and continuous in y > 0, although dis-

placement gradients may exhibit finite discontinuities at wavefronts, and integrable singularities at

ðx; yÞ ¼ 0.

3. Incident plane wave forms

Consider in light of Fig. 1 the general incident plane wave displacement vector

up s
�

þ x
c
cos/ þ y

c
sin/

�
; s þ x

c
cos/ þ y

c
sin/ > 0 ð10Þ

in plane strain, where c is a propagation speed non-dimensionalized with respect to vr.

Substitution into (5a) and (5b) shows that (10) is a valid form only if c ¼ ðc1; c2Þ and

up
x

up
y
¼ m sin/ cos/

c2k � b cos2 / � sin2 /
¼ c2k � a sin2 / � cos2 /

m sin/ cos/
ðk ¼ 1; 2Þ ð11aÞ

ðc21; c22Þ ¼ 1þ a � 1

2
sin2 / þ b � 1

2
cos2 /

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � 1

2
sin2 / � b � 1

2
cos2 /

� �2

þ m2 sin2 / cos2 /

s
ð11bÞ

For 0 < / < p=2 and (6a)–(6c), (11b) is positive, i.e. ðc1; c2Þ are real-valued. In the isotropic limit, (11b)
gives c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
and c2 ¼ 1, which are the non-dimensionalized speeds of, respectively, dilatational (P-)

and rotational (SV-, SH-) waves (Achenbach, 1973).

In view of this behavior, two types of incident waveform are considered: Referring to Fig. 1, type 1

produces the normal stress pulse

rp
n ¼ g0

1 s
�

þ x
c1

cos/ þ y
c1

sin/

�
; s þ x

c1
cos/ þ y

c1
sin/ > 0 ð12Þ

where g1 is a bounded, piecewise-continuous function and ( )0 denotes differentiation with respect to the

argument. In light of Fig. 1, (2c), (5a)–(5c), (11a), (11b), (12),
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up
x ; u

p
y

� �
¼
�
� m cos/

c44D
;
b cos2 / þ sin2 / � c21

c44D sin/

�
c1g1 s

�
þ x

c1
cos/ þ y

c1
sin/

�
ð13aÞ

rp
y ; r

p
yx

� �
¼ eI; eIIð Þg0

1 s
�

þ x
c1

cos/ þ y
c1

sin/

�
ð13bÞ

where, as in (12), the arguments of ðg1; g0
1Þ are positive, and

D ¼ ð1
	

þ mÞ cos2 / þ a sin2 /



b cos2 /
�

þ sin2 / � c21
�
� m ð1

	
þ mÞ sin2 / þ b cos2 /



cos2 / ð14aÞ

DeI ¼ a b cos2 /
�

þ sin2 / � c21
�
þ mð1� mÞ cos2 / ð14bÞ

DeII ¼ b cos2 /
�

þ sin2 / � c21 � m sin2 /
�
cot/ ð14cÞ

Study of (11b) shows that c1 ¼
ffiffiffi
b

p
ð/ ¼ 0Þ and c1 ¼

ffiffiffi
a

p
ð/ ¼ p=2Þ, so that the coefficients of (13a) and

(13b) are bounded for all 0 < / < p=2. In view of this, (12), (13a), (13b) describe in the isotropic limit a

classical P-wave.

The type 2 incident plane wave gives, on the other hand, the shear stress pulse

rp
ng ¼ g0

2 s
�

þ x
c2

cos/ þ y
c2

sin/

�
; s þ x

c2
cos/ þ y

c2
sin/ > 0 ð15Þ

where g2 is a bounded, piecewise-continuous function. In this case,

up
x ; u

p
y

� �
¼ a sin2 / þ cos2 / � c22

c44D sin/
;

�
� m cos/

c44D

�
c2g2 s

�
þ x

c2
cos/ þ y

c2
sin/

�
ð16aÞ

rp
y ; r

p
yx

� �
¼ eI; eIIð Þg0

2 s
�

þ x
c2

cos/ þ y
c2

sin/

�
ð16bÞ

where the arguments are positive, and

D ¼ ðb
	

� mÞ cos2 / þ sin2 /



a sin2 /
�

þ cos2 / � c22
�
þ m ða

	
� mÞ sin2 / þ cos2 /



cos2 / ð17aÞ

DeI ¼ ðm
	

� 1Þ cos2 /
�

� c22
�
� a sin2 /



cot/ ð17bÞ

DeII ¼ c22 þ ð1� mÞ cos2 / þ a sin2 / ð17cÞ
For this wave type, (11b) produces c2 ¼ 1 ð/ ¼ 0; p=2Þ; this demonstrates that (15), (16a), (16b) describe a

classical SV-wave in the isotropic limit, and that the coefficients in (16a) and (16b) are bounded for

0 < / < p=2.

4. Fundamental problem

Consider the same half-space y > 0, subject to (2c), (5a)–(5c), (8), but now the unmixed boundary

conditions

ry ¼ rðx; sÞ; ryx ¼ sðx; sÞ ð18Þ
hold on y ¼ 0, where ðr; sÞ are no worse than integrably singular, and are bounded for finite s > 0. This
fundamental problem can be analyzed by introducing the unilateral (Sneddon, 1972) and bilateral (van der

Pol and Bremmer, 1950) Laplace transforms
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bFF ¼
Z 1

0

F ðsÞe�ps ds ð19aÞ

eFF ¼
Z 1

�1
F̂F e�pqx dx ð19bÞ

and the corresponding inversion operations

F ¼ 1

2pi

Z
F̂F eps dp ð20aÞ

bFF ¼ p
2pi

Z eFF epqx dq ð20bÞ

Here p is real and positive and large enough to ensure existence of (19a), while q is imaginary. Integration in

(20a) and (20b) is over Bromwich contours in, respectively, the p- and q-planes. Application of (19a) and

(19b) to (5a), (5b), (8), (18) leads to the transform solutions

~uux ¼ Uae
�pay þ ab2

�
� B2

� Ub

mqb
e�pby ð21aÞ

~uuy ¼ aa2
�

� A2
� Ua

mqaa
e�pay þ Ube

�pby ð21bÞ

for y > 0, where

c44pR
mqaa

Ua ¼ � ðm
	

� 1ÞB2 þ ab2


q~ss � B2

�
� ab2 þ mq2

�
b~rr ð22aÞ

c44pR
mqb

Ub ¼ �½ðm � 1Þaa2 þ A2�q~rr þ ðB2 � ab2 þ mq2Þaa~ss ð22bÞ

R ¼ ðm
	

� 1Þaa2 þ A2


ðm
	

� 1ÞB2 þ ab2


q2 þ B2

�
� ab2 þ mq2

�2
AB ð22cÞ

In (22a)–(22c) the definitions

A ¼
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bq2

p
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ð23aÞ

ffiffiffiffiffi
2a

p
ðb; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4A2B2

pq
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ 2AB

p�
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S � 2AB

p �
ð23bÞ

S ¼ A2 þ B2 þ m2q2 ¼ 1þ a � cq2; aab ¼ AB ð23cÞ

hold. It can be shown (Payton, 1983) that (6a)–(6c) guarantees that the branch points q ¼ 	ð1=
ffiffiffi
b

p
; 1Þ of

ðA;BÞ lie on the Re(q)-axis, and also constitute branch points of ða; bÞ. Boundedness of (21a) and (21b)

requires that ReðA;B; a; bÞP 0 in the cut q-plane. Eq. (23a) also show that ðvr;
ffiffiffi
b

p
vrÞ are the speeds of,

respectively, rotational and dilatational waves parallel to the x-axis.

Eq. (22c) defines a form of the Rayleigh function. Indeed, in the isotropic limit we have c44 ¼ l,
a ¼ b ¼ 1þ m and c ¼ 2ð1þ mÞ so that

R ¼ m2ð1þ mÞaibiRi; Ri ¼ 4q2aibi þ 1
�

� 2q2
�2 ð24aÞ
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ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ m
� q2

r
; bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ð24bÞ

where Ri is the Rayleigh function for linear isotropic elasticity (Achenbach, 1973). The quantity in (22c)

exhibits the isolated real roots q ¼ 	1=cR, where 0 < cR < 1 and cRvr is the speed of Rayleigh waves parallel

to the x-axis. The quantity R also vanishes when b ¼ a. However, in this limit the exponential terms in (21a)

and (21b) are identical, so that these equations become simple linear combinations of ð~rr; ~ssÞ. It can be shown

that the numerators of the resulting coefficients of ð~rr; ~ssÞ themselves vanish when b ¼ a, so that the addi-
tional roots of R play no role in solution behavior.

In the sequel, the displacements along y ¼ 0 are required, and so (21a), (21b), (22a)–(22c) are combined

to give

~uux ¼
aaNU

R
~ss

c44p
� qN

R
~rr

c44p
ð25aÞ

~uuy ¼
bNV

R
~rr

c44p
þ qN

R
~ss

c44p
ð25bÞ

for y ¼ 0, where R is given by (22c) and

N ¼ A2
�

� aa2
�
ðm
	

� 1ÞB2 þ ab2


þ B2
�

� ab2 þ mq2
�
mAB ð26aÞ

NU ¼ B2
�

� ab2
�2 þ m2q2B2 ð26bÞ

ab2NV ¼ �A2NU ð26cÞ
In the isotropic limit, (25a) and (25b) reduces to forms

~uux ¼ � bi

Ri

~ss
lp

� Ni

Ri

~rr
lp

; ~uuy ¼ � ai

Ri

~rr
lp

þ Ni

Ri

~ss
lp

ð27Þ

found for isotropic elasticity (Brock, 1991). Here Ri is given by (24a) and

Ni ¼ 2 q2
�

þ aibi

�
� 1 ð28Þ

For y ¼ 0, the exponential terms in (21a) and (21b) take the same value (unity). Thus, the numerators of the

coefficients of ð~rr; ~ssÞ in (25a) and (25b) are precisely the ones that vanish when b ¼ a. This suggests that

simplifications to (25a) and (25b) be made: first, (23b) givesffiffiffi
a

p
ðb 	 aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 	 2AB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 	 Bð Þ2 þ m2q2

q
ð29Þ

and it follows that a2 ¼ b2 when b 	 a ¼ 0, i.e.

q2 ¼ cð1þ aÞ � 2að1þ bÞ 	 i2m
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � a � b

p

c2 � 4ab
ð30Þ

In view of (6a)–(6c) the denominator and, in the numerator, the real term and second radical in the

imaginary term, are positive and vanish in the isotropic limit. However, the second radical vanishes in this

limit as Oð
ffiffi
e

p
Þ, e ! 0 while the other terms behave as OðeÞ, e ! 0. Therefore, the apparent branch points

defined in (30) would move to infinity in the q-plane. Additional cuts for those branch points must be

introduced so that the restriction Reða; bÞP 0 is still met. To this end, b þ a is allowed to be continuous

across these cuts, although ða; bÞ themselves are multi-valued. Thus, the additional cuts define branches of
b � a. Similar situations arose in the studies by Norris and Achenbach (1984) and Velgaki and Georgiadis

(2001).
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Here, however, we recognize that b ¼ a defines roots of both R and the coefficient numerators in (26a)–

(26c) and factor the quantity b � a out of each, thereby canceling them from the formulas. From (A.4),

(A.5a), (A.5b) in the Appendix A, and use of (23c), the result

~uux ¼ � aðb þ aÞB
2D

~ss
c44p

� Mq
D

~rr
c44p

ð31aÞ

~uuy ¼ �ðb þ aÞA
2D

~rr
c44p

þ Mq
D

~ss
c44p

ð31bÞ

for y ¼ 0 is obtained, where

D ¼ A þ A2
h

þ ðm � 1Þ2q2
i
B; M ¼ A þ ð1� mÞB ð32Þ

It is noted that, for the restriction (6a)–(6c) the coefficients of ð~rr; ~ssÞ exhibit only the branch cuts ImðqÞ ¼ 0,

jReðqÞj > 1 and ImðqÞ ¼ 0, jReðqÞj > 1=
ffiffiffi
b

p
. In particular, D is analytic in the q-plane cut along ImðqÞ ¼ 0,

jReðqÞj > 1=
ffiffiffi
b

p
and has the non-isolated real roots q ¼ 	1=cR ð0 < cR < 1Þ. Indeed, setting D ¼ 0 and

rationalization gives a cubic equation in q2 that is identical in form to that obtained by Payton (1983) as

equation (4.3.22) for the roots of the transversely isotropic Rayleigh function. Thus, D is the essential

factor of the Rayleigh function R in (22c) and, as an alternative to the cubic equation, cR can be found to

within a simple quadrature as the formula (B.4a) and (B.4b) in Appendix B. With (31a) and (31b) avail-

able, the symmetric and anti-symmetric crack problems for both type 1 and type 2 incident waves can be

addressed.

5. Symmetric and anti-symmetric problem solutions

In view of (13b) and (16b), the mixed boundary conditions (9a) for the symmetric problem can be written

in the Wiener-Hopf (Noble, 1958) form

uy ¼
1

2
V ðx; sÞ ð33aÞ

ryx ¼ 0 ð33bÞ

ry ¼ �eIg0 s
�

þ x
c
cos/

�
H s
�

þ x
c
cos/

�
Hð�xÞ þ Rðx; sÞ ð33cÞ

for s > 0 on y ¼ 0. Here H( ) is the Heaviside function and (13a) and (13b) and ðc1; g0
1Þ are understood for

the type 1 incident plane wave, while (16a) and (16b) and ðc2; g0
2Þ are understood for the type 2 case. The

function V is the unknown crack-opening displacement, and therefore vanishes identically for x > 0 but

must be continuous as x ! 0�. The function R is the unknown normal crack plane stress ahead of the
crack, and therefore vanishes for x < 0 and may be integrably singular as x ! 0þ.

The form of (33a)–(33c) implies that the fundamental problem considered above governs the solution to

the symmetric problem upon setting s � 0, equating r to the right-hand side of (33c) and enforcing the

condition (33a). Thus, operating on (33a) and the right-hand side of (33c) with (19a) and (19b) reduces the

symmetric problem to the equation

eVV ¼ �ðb þ aÞA
c44pD

eRR � eIĝg0

pðcos/
c � qÞ

!
ð34Þ
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in transform space. Existence requires that eVV be analytic for ReðqÞ < cos/=c and that eRR and the second

term in parentheses be analytic for ReðqÞ > �1=
ffiffiffi
b

p
and ReðqÞ < cos/=c, respectively. The parenthesis

coefficient is analytic in the strip jReðqÞj < 1=
ffiffiffi
b

p
, while the singularity in the second term in parentheses is

isolated. Therefore, by a standard (Noble, 1958; Achenbach, 1973) process of decomposition by factor-
ization and summation, (34) can be written in a form that equates a term that is analytic for

ReðqÞ > �1=
ffiffiffi
b

p
to one that is analytic for ReðqÞ < cos/=c. The key factorization process concerns the

quantity D=ðb þ aÞ in (34), and is outlined in Appendix B. Because both terms are analytic in the common

strip �1=
ffiffiffi
b

p
< ReðqÞ < cos/=c, they must, by Liouville�s theorem, be equal to the same bounded entire

function of ðp; qÞ. However, continuity of V as x ! 0� requires that pqeVV be bounded as jqj ! 1, which

implies that the entire function is in fact zero. The result is that two equations exist, and can be solved to

yield

eVV ¼ � eIĝg0

c44p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pp
ab � ðm � 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
b

p
cos/

c

q
cos/

c þ 1
cR

� �
Gþ

cos/
c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

ffiffiffi
b

pp
q � 1

cR

� �
G�

ð35aÞ

eRR ¼ eIĝg0

p cos/
c � q

� � 1

24 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
b

p
cos/

c

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

ffiffiffi
b

pp q þ 1
cR

cos/
c þ 1

cR

Gþ

Gþ
cos/

c

� �
35 ð35bÞ

In (35a) and (35b) cR is defined by (B.4a) and (B.4b) and the terms G	 are defined in Appendix B by (B.7a)

and (B.7b).

In a similar manner, the mixed condition (9b) for the anti-symmetric case can be treated with the

fundamental solution and the Wiener-Hopf approach to give the transform expressions

eUU ¼ � eIIĝg0

c44p2

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pp
ab � ðm � 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos/

c

q
cos/

c þ 1
cR

� �
Gþ

cos/
c

� � ffiffiffiffiffiffiffiffiffiffiffi
1� q

p

ðq � 1
cR
ÞG�

ð36aÞ

eTT ¼ eIIĝg0

pðcos/
c � qÞ

1

24 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos/

c

q
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
q þ 1

cR

cos/
c þ 1

cR

Gþ

Gþ
cos/

c

� �
35 ð36bÞ

Here ðT ;UÞ are, respectively, the crack plane shear traction ahead of the crack edge and the crack plane

slip. In terms of the fundamental solution, now r � 0 and

s ¼ �eIIg0 s
�

þ x
c
cos/

�
H s
�

þ x
c
cos/

�
Hð�xÞ þ T ðx; sÞ ð37Þ

With (35a), (35b), (36a), (36b) and the fundamental solution in hand, the solution process for the symmetric

and anti-symmetric problems is essentially complete. The transient behavior of the stresses in the vicinity of

the crack generated by diffraction of the two incident waves is now examined.

6. Crack edge transient stress fields

In light of (21a), (21b), (22a)–(22c) superposition and the results obtained above, one can write the
transforms of the displacements ðus; uaÞ in (7). Operating on (2c) and (5c) with (19a) and (19b) and use of

(22a)–(22c) then gives the corresponding stress transforms. Results valid near ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0Þ the crack
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edge can be obtained by allowing jqj ! 1 and keeping the highest-order terms (van der Pol and Bremmer,

1950). The key step in this operation is use of the asymptotic forms

A �
ffiffiffiffiffiffi
ab

p ffiffiffi
q

p ffiffiffiffiffiffiffi�q
p

; B � ffiffiffi
q

p ffiffiffiffiffiffiffi�q
p

; a � a0

ffiffiffi
q

p ffiffiffiffiffiffiffi�q
p

; b � b0

ffiffiffi
q

p ffiffiffiffiffiffiffi�q
p ð38aÞ

a0 ¼
1

2
ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pq�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � 2

ffiffiffiffiffiffi
ab

pq �
; b0 ¼

1

2
ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pq�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � 2

ffiffiffiffiffiffi
ab

pq �
ð38bÞ

where ða0; b0Þ ¼ 1 in the isotropic limit, and Reð ffiffiffi
q

p
;
ffiffiffiffiffiffiffi�q

p ÞP 0 in planes cut along ImðqÞ ¼ 0, ReðqÞ < 0
and ImðqÞ ¼ 0, ReðqÞ > 0, respectively. It is then easily shown, for example, that

2

p
~rryx �� A0B0

R0

ffiffiffi
a

p
b0

KIffiffiffiffiffiffiffi�q
p

�
þ KIIffiffiffi

q
p
�

ĝg0

p
e�pa0y

ffiffi
q

p ffiffiffiffi�q
p

þ B0

R0

ffiffiffi
b

p
B0

KIIffiffiffi
q

p
�

þ
ffiffiffi
a

p
b0A0

KIffiffiffiffiffiffiffi�q
p

�
ĝg0

p
e�pb0y

ffiffi
q

p ffiffiffiffi�q
p

ð39Þ

In (39) the definitions

A0 ¼ ðm � 1Þa2
0 þ b; B0 ¼ m � 1þ ab2

0 ð40aÞ

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � 2

ffiffiffiffiffiffi
ab

pq
ab
h

� ðm � 1Þ2
i ffiffiffiffiffiffi

ab
p

b0

�
� a0

�
ð40bÞ

KI ¼
2eI
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
b

p
cos/

c

q
cos/

c þ 1
cR

� �
b1=4Gþðcos/

c Þ
; KII ¼

2eII
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos/

c

q
cos/

c þ 1
cR

� �
Gþ

cos/
c

� � ð40cÞ

hold. In (39) and (40c) the quantities ðc1; g0
1Þ and Eqs. (14a)–(14c) are understood for the type 1 incident

plane wave, while ðc2; g0
2Þ and (17a)–(17c) are understood for the type 2 case. It is noted that only the

contributions from the diffracted waves appear in (39), because they dominate the stress transform con-

tributions due to the incident waves (12) and (15) themselves for jqj ! 1.
Substitution of the first term in (39) into (20b) gives the two generic inversion operations

ĝg0

2pi

Z
ep qx�a0y

ffiffi
q

p ffiffiffiffi�q
pð Þ 1ffiffiffi

q
p ;

1ffiffiffiffiffiffiffi�q
p

� �
dq ð41Þ

where the Bromwich contour can be taken as the entire Im(q)-axis. Cauchy theory can then be used to

change this contour to paths in the q-plane parameterized by

q ¼ �t
x 	 ia0y

ðy > 0Þ ð42Þ

where t is real and positive. Upon introducing the polar coordinates ðr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; tan h ¼ y=xÞ depicted in

Fig. 1, (41) takes the simple form

ĝg0

p
ffiffi
r

p ðCa; SaÞ
Z 1

0

e�ptffiffi
t

p dt ð43aÞ

Ca ¼
1

ra

ffiffiffiffiffiffiffi
2ra

p cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h

ra

s 
þ a0 sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h

ra

s !
ð43bÞ
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Sa ¼
1

ra

ffiffiffiffiffiffiffi
2ra

p cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h

ra

s 
� a0 sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h

ra

s !
ð43cÞ

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h þ a2

0 sin
2 h

q
ð43dÞ

where r � 0, 0 < h < p. In the isotropic limit, ra ¼ 1 and (43b) and (43c) give ðcos h=2; sin h=2Þ, respectively.
The integration in (43a) gives

ffiffiffiffiffiffiffiffi
p=p

p
(Pierce and Foster, 1956). Therefore, the final inversion operation need

deal only with the term ĝg0=
ffiffiffi
p

p
, and can be performed by inspection and convolution theory (Sneddon,

1972). A similar procedure holds for the transforms of ðrx; ryÞ as well. In summary, then, the asymptotic

results

rx � � A0

ffiffiffi
b

p
B0Ca

�h
þ

ffiffiffi
a

p
D0Cb

�
KI þ

ffiffiffi
a

p
a0B0 A0Sað þ D0SbÞKII

i IðsÞ
R0

ffiffi
r

p ð44aÞ

ry � � B0

ffiffiffi
b

p
C0

�h
þ

ffiffiffi
a

p
A0Cb

�
KI þ

ffiffiffi
a

p
a0B0 C0Sað þ B0SbÞKII

i IðsÞ
R0

ffiffi
r

p ð44bÞ

ryx �
ffiffiffi
a

p
A0 b0Sað

h
� SbÞKI þ

ffiffiffi
b

p
B0Cb

�
�

ffiffiffi
a

p
A0Ca

�
KII

iB0IðsÞ
R0

ffiffi
r

p ð44cÞ

hold for s > 0, r � 0, 0 < h < p, where ðCb; Sb; rbÞ follow from (43a)–(43d) by replacing a0 with b0, and

C0 ¼ mðm � 1Þ þ aða2
0 � bÞ;D0 ¼ b þ ½mðm � 1Þ � ab�b2

0 ð45aÞ

IðsÞ ¼
Z s

0

g0ðtÞffiffiffiffiffiffiffiffiffiffi
s � t

p dt ð45bÞ

7. Speed and intensity factor behaviors

The speed of Rayleigh waves parallel to the x-axis for the class of anisotropic material considered here is

given by cRvr, where (B.4a) and (B.4b) hold. Table 1 presents the dimensionless constant cR, along with the

properties ða; b;m; c44Þ for five materials––beryl, cobalt, ice, magnesium and titanium––which satisfy the

restriction (6a)–(6c) on this class. The entries show that, as a fraction of the speed vr, the Rayleigh speeds
are similar, and would be typical of isotropic solids (Achenbach, 1973). It should also be noted that the

Table 1 data is in agreement with results by Payton (1983).

In Table 2, the dimensionless constants ðc1; c2Þ that define the two plane wave speeds supported by the

five materials featured in Table 1 are given for various values of attack angle /. It is noted that c1, which

Table 1

Dimensionless Rayleigh wave speed

a b m c44 (GPa) cR

Beryl 3.62 4.11 2.01 68.6 0.956

Cobalt 4.74 4.07 2.37 75.5 0.962

Ice 4.57 4.26 2.64 3.17 0.959

Magnesium 3.74 3.61 2.3 16.4 0.943

Titanium 3.88 3.47 2.48 46.7 0.936
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Table 2

Dimensionless plane wave speeds and intensity factors for beryl, cobalt, ice, magnesium, titanium

/ c1 KI KII c2 KI KII

Beryl

4.5� 2.025 0.1214 0.0189 1.004 0.099 0.4892

13.5� 2.003 0.1346 0.0576 1.035 0.2771 0.4376

22.5 1.964 0.1637 0.0984 1.086 0.4066 0.3476

31.5� 1.916 0.213 0.14 1.142 0.4782 0.2326

40.5� 1.872 0.2848 0.1737 1.183 0.4937 0.0984

49.5� 1.847 0.3701 0.187 1.19 0.4607 �0.0536

58.5� 1.848 0.4476 0.1715 1.156 0.396 �0.22

67.5� 1.867 0.5032 0.1341 1.098 0.3127 �0.399

76.5� 1.888 0.5394 0.055 1.04 0.2092 �0.5831

85.5� 1.9 0.5641 0.0326 1.005 0.0769 �0.7511

Cobalt

4.5� 2.016 0.1667 0.0205 1.006 0.1226 0.4878

13.5� 2.001 0.1857 0.0622 1.049 0.3321 0.4214

22.5 1.979 0.2265 0.104 1.119 0.4614 0.313

31.5� 1.96 0.2915 0.1414 1.187 0.5083 0.1848

40.5� 1.962 0.3736 0.1631 1.225 0.491 0.0456

49.5� 1.994 0.4505 0.1597 1.2167 0.4357 �0.1014

58.5� 2.048 0.504 0.1351 1.168 0.3664 �0.2559

67.5� 2.104 0.5394 0.1002 1.102 0.2887 �0.4209

76.5 2.149 0.5532 0.0619 1.041 0.1937 �0.5936

85.5� 2.174 0.5683 0.0215 1.005 0.0713 �0.7536

Ice

4.5� 2.062 0.19 0.0202 1.004 0.1079 0.4891

13.5� 2.05 0.2065 0.0605 1.037 0.2971 0.4286

22.5� 2.029 0.2413 0.1001 1.0896 0.4239 0.326

31.5� 2.01 0.2947 0.1348 1.142 0.4823 0.2004

40.5� 2.003 0.3617 0.1566 1.174 0.4837 0.0613

49.5� 2.017 0.4289 0.1579 1.171 0.4458 �0.0881

58.5� 2.048 0.4828 0.1389 1.136 0.385 �0.25

67.5� 2.086 0.52 0.1067 1.084 0.3066 �0.419

76.5� 2.118 0.5447 0.068 1.034 0.2057 �0.595

85.5� 2.135 0.5631 0.024 1.004 0.0754 �0.7556

Magnesium

4.5� 1.899 0.1743 0.0236 1.002 0.0861 0.481

13.5� 1.892 0.1904 0.07 1.018 0.2439 0.4296

22.5 1.881 0.223 0.1135 1.045 0.3646 0.3367

31.5� 1.87 0.1713 0.1498 1.071 0.438 0.2138

40.5� 1.866 0.3313 0.1724 1.088 0.4644 0.0757

49.5� 1.872 0.3944 0.176 1.087 0.4504 �0.0864

58.5� 1.887 0.4515 0.1589 1.07 0.403 �0.2522

67.5� 1.91 0.4972 0.1259 1.043 0.3255 �0.4211

76.5� 1.923 0.5315 0.0817 1.0716 0.2176 �0.5838

85.5� 1.933 0.5564 0.0291 1.002 0.0791 �0.7241

Titanium

4.5� 1.863 0.2046 0.0257 1.001 0.0792 0.4773

13.5� 1.863 0.2213 0.0751 1.01 0.2264 0.4267

22.5 1.867 0.2537 0.1185 1.024 0.3434 0.3328

31.5� 1.872 0.2988 0.151 1.037 0.42 0.2067

40.5� 1.884 0.3516 0.1684 1.045 0.4542 0.0589

49.5� 1.902 0.4054 0.1681 1.044 0.4484 �0.0108
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corresponds to a dilatational (P-) wave speed in the isotropic limit, achieves maximum values for

/ ¼ ð0; p=2Þ. The opposite effect occurs for c2, which corresponds in the isotropic limit to a rotational (SV-)

wave speed. Indeed, its maximum value occurs roughly in the mid-range of /, and is nearly 20% higher than

its limit values at / ¼ ð0; p=2Þ. Thus, a type 1 plane wave loses speed by traveling at angles to the material
symmetry ðx-; y-Þ axes of the solids considered here, while the type 2 wave gains speed. These results are also

consistent with the studies by Payton (1983) and Norris and Achenbach (1984).

Eq. (45b) shows that IðsÞ is merely a weighted history of the plane wave stress pulse functions ðg0
1; g

0
2Þ. In

view of (40c), (44a)–(44c), therefore, it is the dimensionless quantities ðKI;KIIÞ that essentially define, re-

spectively, the Modes I and II dynamic stress intensity factors for the diffraction process. Values for these

quantities are, therefore, given in Table 2 for the type 1 and type 2 plane wave cases. The data indicates

behavior similar to that for their respective (P-wave, SV-wave) isotropic limit cases: For type 1, KI increases

with /, while KII reaches a maximum in the mid-range of 0 < / < p=2. Moreover, the maximum values of
KI are much larger than those of KII. For type 2, on the other hand, KI achieves a mid-range maximum,

while KII changes sign in mid-range, and the maximum values are more comparable.

Thus, a stress intensity factor-based fracture criterion (Freund, 1993) might predict failure for type 1

plane waves that approach the crack at a single oblique angle, while two such angles might arise for type 2

plane wave diffraction.

8. Comments

This article considered the transient plane-strain problem of diffraction of plane waves by a semi-infinite

crack in an unbounded orthotropic or transversely isotropic solid. A class of materials that included beryl,

cobalt, ice, magnesium and titanium was chosen for illustration, the plane waves approached the crack at a

general oblique angle of attack, and were of two types. One type was a normal traction pulse that reduced
to a classical dilatational (P-) wave in the isotropic limit, and the other, a shear traction pulse that reduced

to a rotational (SV-) wave.

Linear superposition and symmetry arguments reduced the analysis to the treatment of initial/mixed

boundary value problems, solved by Laplace transform and Wiener-Hopf techniques. An exact solution in

the transform space was obtained, and expressions for all stresses at small radial distances from the crack

edge were obtained by inversion.

The incident plane wave pulses were largely arbitrary, and it was found that two dimensionless quantities

essentially defined the Modes I and II dynamic stress intensity factors for any pulse form. Values of these
quantities at various attack angles were given for the five materials noted above. Their variation with angle

was similar to that for diffraction of P- and SV-waves in an isotropic solid.

The speeds of plane wave propagation also varied with attack angle, and exact formulas for those speeds

gave values at various angles for the five materials. These showed that the speed of the normal traction

pulse was maximized when wave travel was parallel to a material symmetry axis, while the speed of the

shear traction pulse reached a maximum when propagation was at an oblique angle. Such behavior was

Table 2 (continued)

/ c1 KI KII c2 KI KII

58.5� 1.923 0.4545 0.151 1.035 0.4061 �0.2679

67.5� 1.943 0.4956 0.12 1.021 0.3294 �0.4319

76.5 1.96 0.528 0.0782 1.009 0.2196 �0.5884

85.5� 1.969 0.552 0.0279 1.001 0.0795 �0.7136
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consistent with previous studies in anisotropic solids. Calculations based on a formula (Appendix B),

analytic to within a simple quadrature, showed for the five materials that the values of the crack plane

Rayleigh wave speed were similar to those for isotropic solids.

In summary, transient studies of wave diffraction by cracks (and the possibility of dynamic fracture) in
anisotropic solids do yield results that show both the importance of anisotropy, but also the similarities in

behavior with studies in isotropic solids. Indeed, manipulations in the transform space can partly offset the

complications that arise in the treatment of anisotropic solids.
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Appendix A

Consider NV defined by (26c). By using (26b) and (23c), it can be written as

NV ¼ B2
�

� ab2
�

A2
�

� aa2
�
� m2q2aa2 ðA:1Þ

Carrying out the multiplication and using (23a), (23b), (29) gives

NV ¼ 2A2B2 � S2

2
þ a2

2
b2
�

� a2
�2

m2q2
�

þ B2 � A2
�

ðA:2Þ

But (23a), (23b), (29) also show that

S2 � 4A2B2 ¼ a2 b2
�

� a2
�2
; m2q2 þ B2 ¼ a

2
ðb þ a þ b � aÞ � A2 ðA:3Þ

whereupon (A.2) and NU given by (26b) can be written as

NV ¼ a b2
�

� a2
�

aa2
�

� A2
�
; NU ¼ ab

A

� �2

b2
�

� a2
�

aa2
�

� A2
�

ðA:4Þ

In similar fashion, (26a) and (22c) can be written as

N ¼ B
a
ðb � aÞ A2

�
� aa2

�
M ; M ¼ A þ ð1� mÞB ðA:5aÞ

R ¼ B
a
ðb � aÞ A2

�
� aa2

�
D; D ¼ A þ A2

h
þ ðm � 1Þ2q2

i
B ðA:5bÞ

These functions all exhibit the common factor ðb � aÞðA2 � aa2Þ.
Similar factorizations of the terms ðRi;NiÞ in (24a) and (28) that arise in the isotropic limit can also be

performed:

Ni ¼ bið � aiÞ
1þ m

m
ai

�
þ 1� m

m
bi

�
ðA:6aÞ

Ri ¼
2

m
bið � aiÞ ð1

	
þ mÞai þ ð1þ m � 4q2Þbi



ðA:6bÞ
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Appendix B

From (32) consider the function D/A. It exhibits the branch cuts ImðqÞ ¼ 0; 1=
ffiffiffi
b

p
< jReðqÞj < 1, has the

isolated real roots q ¼ 	1=cR ð0 < cR < 1Þ and behaves as

ðm � 1Þ2ffiffiffiffiffiffi
ab

p
"

�
ffiffiffiffiffiffi
ab

p #
q2; jqj ! 1 ðB:1Þ

We define, therefore, the function

F ¼ D
ffiffiffiffiffiffi
ab

p

A ab � ðm � 1Þ2
h i 1

1
c2R
� q2

ðB:2Þ

that is analytic in the same cut plane, but has no roots there, and behaves as unity when jqj ! 1. This

function can be written as the product of two functions, F	, that are analytic in the overlapping regions

ReðqÞ > �1=
ffiffiffi
b

p
and ReðqÞ < 1=

ffiffiffi
b

p
, respectively, by means of a standard procedure (Noble, 1958), where

ln F	 ¼ 1

p

Z 1

1=
ffiffi
b

p
xdt
t 	 q

ðB:3aÞ

x ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

pffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bt2 � 1

p a
h

þ ððm � 1Þ2 � abÞt2
i

ðB:3bÞ

Both F	 are analytic in the common strip jReðqÞj < 1=
ffiffiffi
b

p
, and (B.2) holds there as well. Therefore, setting

q ¼ 0 in (B.2) and using (B.3a) and (B.3b) gives the formula

cR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab � ðm � 1Þ2

ð1þ
ffiffiffi
a

p
Þ
ffiffiffiffiffiffi
ab

p

s
FR ðB:4aÞ

ln FR ¼ 1

p

Z 1

1=
ffiffi
b

p
xdt

t
ðB:4bÞ

Here (6a)–(6c) guarantees that the coefficient of FR is real and positive. A similar approach was used by

Norris and Achenbach (1984), albeit for a more complicated function than D=A. Some other examples for

this root-finding approach are given by Brock (1998).

Now consider from (34) the function D=
ffiffiffi
a

p
ðb þ aÞ. It exhibits the same branch cuts and isolated roots as

does D=A, but behaves as

ðm � 1Þ2 � abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pp q2; jqj ! 1 ðB:5Þ

The function

G ¼ Dffiffiffi
a

p
ðb þ aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 2

ffiffiffiffiffiffi
ab

pp
ab � ðm � 1Þ2

1
1
c2R
� q2

ðB:6Þ

is defined, where (6a)–(6c) guarantees that the central ratio is real and positive. This function can also be
written as the product of two functions, G	, that are analytic in the same overlapping regions as were,

respectively, F	. In this case, the standard procedure (Noble, 1958) yields

L.M. Brock, M.T. Hanson / International Journal of Solids and Structures 39 (2002) 5393–5408 5407



lnG	 ¼ � 1

p

Z 1

1=
ffiffi
b

p
Xdt
t 	 q

ðB:7aÞ

X ¼ tan�1

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bt2 � 1

p
B

ab2 � B2 A2 þ ðm � 1Þ2t2
h i

ab2 A2 þ ðm � 1Þ2t2
h i

� A2
ðB:7bÞ

where ð�A2;B; bÞ are defined in (23a) and (23b), with t replacing q, and it is noted that these quantities are

real and positive for 1=
ffiffiffi
b

p
< t < 1. In the isotropic limit, (B.7b) appropriately reduces to (Achenbach,

1973)

X ¼ tan�1
4t2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

1þm

q
ð1� 2t2Þ2

ðB:8Þ

It should be noted that an expression for cR could also be obtained by setting q ¼ 0 in (B.6) and using

(B.7a). The integrand term X is more complicated than its counterpart x in (B.4b), however, so that the

formula is less compact.
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